Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Eur J Med Chem ; 268: 116297, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458108

RESUMO

A series of novel 9-alkyl/aryl-2-aryl-6-carbamoylpurines were synthesized, and their activity against Mycobacterium tuberculosis strain H37Rv was assessed. The SAR analysis on the first set of derivatives, with an alkyl or aryl unit at N-9 and a phenolic unit at C-2, showed that the activity depends on the purine ring substituents at N-9 and C-2. A phenyl group at N-9 combined with a 3-hydroxyphenyl or 4-hydroxyphenyl at C-2 improve the activity. The most active compound of this set has a phenyl group at N-9 and a 4-hydroxyphenyl group at C-2, displaying an IC90 = 1.2 µg/mL and a selectivity index higher than 25.5. This compound served as a Hit to design the second set of derivatives. A phenyl group at N-9 was maintained, and the group at C-2 was diversified. The SAR analysis showed that the aryl unit at C-2 must have an oxygen or nitrogen atom bonded in the para position. A proton, a small alkyl or a substituted aryl group may also be bonded to the oxygen. The compound with the 4-methoxyphenyl group at C-2, 1Bd, exhibits the highest activity with an IC90 < 0.19 µg/mL. This compound is highly potent against M. tuberculosis strain H37Rv and non-toxic for VERO mammalian cells with an SI > 153.8. Compound 1Bd was also non-cytotoxic against primary macrophage cultures at IC90, 2xIC90, and 10xIC90 and significantly reduced the bacterial load in M. tuberculosis-infected macrophages at the same concentrations. Compound 1Bd showed a favorable pharmacokinetic profile when administered orally, with major lung and liver accumulation. In vivo antimycobacterial efficacy of 1Bd was tested at 25 mg/kg. At the tested regimen, a decrease in bacterial burden was observed in the liver. Optimization of the treatment regimen should be performed to fully potentiate the in vivo efficacy of our lead molecule, particularly in the lung, the main target organ of M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Oxigênio , Relação Estrutura-Atividade , Mamíferos
2.
Front Microbiol ; 14: 1266261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840746

RESUMO

Mycobacterium ulcerans causes Buruli Ulcer, a neglected infectious skin disease that typically progresses from an early non-ulcerative lesion to an ulcer with undermined edges. If not promptly treated, these lesions can lead to severe disfigurement and disability. The standard antibiotic regimen for Buruli Ulcer treatment has been oral rifampicin combined with intramuscular streptomycin administered daily for 8 weeks. However, there has been a recent shift toward replacing streptomycin with oral clarithromycin. Despite the advantages of this antibiotic regimen, it is limited by low compliance, associated side effects, and refractory efficacy for severe ulcerative lesions. Therefore, new drug candidates with a safer pharmacological spectrum and easier mode of administration are needed. Statins are lipid-lowering drugs broadly used for dyslipidemia treatment but have also been reported to have several pleiotropic effects, including antimicrobial activity against fungi, parasites, and bacteria. In the present study, we tested the susceptibility of M. ulcerans to several statins, namely atorvastatin, simvastatin, lovastatin and fluvastatin. Using broth microdilution assays and cultures of M. ulcerans-infected macrophages, we found that atorvastatin, simvastatin and fluvastatin had antimicrobial activity against M. ulcerans. Furthermore, when using the in vitro checkerboard assay, the combinatory additive effect of atorvastatin and fluvastatin with the standard antibiotics used for Buruli Ulcer treatment highlighted the potential of statins as adjuvant drugs. In conclusion, statins hold promise as potential treatment options for Buruli Ulcer. Further studies are necessary to validate their effectiveness and understand the mechanism of action of statins against M. ulcerans.

3.
Bioengineering (Basel) ; 10(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627871

RESUMO

Cellulose micro/nanomaterials (CMNMs) are innovative materials with a wide spectrum of industrial and biomedical applications. Although cellulose has been recognized as a safe material, the unique properties of its nanosized forms have raised concerns about their safety for human health. Genotoxicity is an endpoint that must be assessed to ensure that no carcinogenic risks are associated with exposure to nanomaterials. In this study, we evaluated the genotoxicity of two types of cellulose micro/nanofibrils (CMF and CNF) and one sample of cellulose nanocrystals (CNC), obtained from industrial bleached Eucalyptus globulus kraft pulp. For that, we exposed co-cultures of human alveolar epithelial A549 cells and THP-1 monocyte-derived macrophages to a concentration range of each CMNM and used the micronucleus (MN) and comet assays. Our results showed that only the lowest concentrations of the CMF sample were able to induce DNA strand breaks (FPG-comet assay). However, none of the three CMNMs produced significant chromosomal alterations (MN assay). These findings, together with results from previous in vitro studies using monocultures of A549 cells, indicate that the tested CNF and CNC are not genotoxic under the conditions tested, while the CMF display a low genotoxic potential.

4.
Sci Adv ; 9(31): eadg2122, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540749

RESUMO

Since the initial spread of severe acute respiratory syndrome coronavirus 2 infection, several viral variants have emerged and represent a major challenge for immune control, particularly in the context of vaccination. We evaluated the quantity, quality, and persistence of immunoglobulin G (IgG) and IgA in individuals who received two or three doses of messenger RNA (mRNA) vaccines, compared with previously infected vaccinated individuals. We show that three doses of mRNA vaccine were required to match the humoral responses of preinfected vaccinees. Given the importance of antibody-dependent cell-mediated immunity against viral infections, we also measured the capacity of IgG to recognize spike variants expressed on the cell surface and found that cross-reactivity was also strongly improved by repeated vaccination. Last, we report low levels of CXCL13, a surrogate marker of germinal center activation and formation, in vaccinees both after two and three doses compared with preinfected individuals, providing a potential explanation for the short duration and low quality of Ig induced.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Anticorpos Antivirais , Vacinação , Imunoglobulina G , RNA Mensageiro , Quimiocina CXCL13/genética
5.
Polymers (Basel) ; 15(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37514527

RESUMO

Cellulose is the most abundant renewable polymer on Earth and can be obtained from several different sources, such as trees, grass, or biomass residues. However, one of the issues is that not all the fractionation processes are eco-friendly and are essentially based on cooking the lignocellulose feedstock in a harsh chemical mixture, such as NaOH + Na2S, and water, to break loose fibers. In the last few years, new sustainable fractionation processes have been developed that enable the obtaining of cellulose fibers in a more eco-friendly way. As a raw material, cellulose's use is widely known and established in many areas. Additionally, its products/derivatives are recognized to have a far better environmental impact than fossil-based materials. Examples are textiles and packaging, where forest-based fibers may contribute to renewable and biodegradable substitutes for common synthetic materials and plastics. In this review, some of the main structural characteristics and properties of cellulose, recent green extraction methods/strategies, chemical modification, and applications of cellulose derivatives are discussed.

6.
Int J Biol Macromol ; 248: 125886, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481180

RESUMO

The use of cellulose micro/nanofibrils (CMNFs) as reinforcement paper additive at industrial scale is delayed due to inconsistent results, suggesting a lack of proper consideration of some key parameters. The high influence of fibrillated nanocellulose dispersion has been recently identified as a key parameter for paper bulk reinforcement but it has not been studied for surface coating applications yet. This paper studies the effect of CMNF dispersion degree prior to their addition and during mixing with starch on the reinforcement of paper by coating. Results show that this effect depends on the type of CMNFs since it is related to the surface interactions. For a given formulation, a correlation is observed between the CMNF dispersion and the CMNF/starch mixing agitation with the rheology of the coating formulation which highly affects the paper properties. The optimal dispersion degree is different for each nanocellulose, but the best mechanical properties were always achieved at the lowest viscosity of the coating formulation. In general, the initial state of the nanocellulose 3D network, influences the mixing and smooth application of the coating and affects the reinforcement effect. Therefore, the CMNF industrial implementation in coating formulations will be facilitated by the on-line control of formulations prior to their surface application.


Assuntos
Celulose , Indústrias , Reologia , Amido , Viscosidade
7.
Bioeng Transl Med ; 8(3): e10504, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206216

RESUMO

Diabetic foot infection (DFI) is an important cause of morbidity and mortality. Antibiotics are fundamental for treating DFI, although bacterial biofilm formation and associated pathophysiology can reduce their effectiveness. Additionally, antibiotics are often associated with adverse reactions. Hence, improved antibiotic therapies are required for safer and effective DFI management. On this regard, drug delivery systems (DDSs) constitute a promising strategy. We propose a gellan gum (GG)-based spongy-like hydrogel as a topical and controlled DDS of vancomycin and clindamycin, for an improved dual antibiotic therapy against methicillin-resistant Staphylococcus aureus (MRSA) in DFI. The developed DDS presents suitable features for topical application, while promoting the controlled release of both antibiotics, resulting in a significant reduction of in vitro antibiotic-associated cytotoxicity without compromising antibacterial activity. The therapeutic potential of this DDS was further corroborated in vivo, in a diabetic mouse model of MRSA-infected wounds. A single DDS administration allowed a significant bacterial burden reduction in a short period of time, without exacerbating host inflammatory response. Taken together, these results suggest that the proposed DDS represents a promising strategy for the topical treatment of DFI, potentially overcoming limitations associated with systemic antibiotic administration and minimizing the frequency of administration.

8.
Lancet Reg Health Am ; 21: 100498, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37187486

RESUMO

Background: Dengue is a global problem that seems to be worsening, as hyper-urbanization associated with climate change has led to a significant increase in the abundance and geographical spread of its principal vector, the Aedes aegypti mosquito. Currently available solutions have not been able to stop the spread of dengue which shows the urgent need to implement alternative technologies as practical solutions. In a previous pilot trial, we demonstrated the efficacy and safety of the method 'Natural Vector Control' (NVC) in suppressing the Ae. aegypti vector population and in blocking the occurrence of an outbreak of dengue in the treated areas. Here, we expand the use of the NVC program in a large-scale 20 months intervention period in an entire city in southern Brazil. Methods: Sterile male mosquitoes were produced from locally sourced Ae. aegypti mosquitoes by using a treatment that includes double-stranded RNA and thiotepa. Weekly massive releases of sterile male mosquitoes were performed in predefined areas of Ortigueira city from November 2020 to July 2022. Mosquito monitoring was performed by using ovitraps during the entire intervention period. Dengue incidence data was obtained from the Brazilian National Disease Surveillance System. Findings: During the two epidemiological seasons, the intervention in Ortigueira resulted in up to 98.7% suppression of live progeny of field Ae. aegypti mosquitoes recorded over time. More importantly, when comparing the 2020 and 2022 dengue outbreaks that occurred in the region, the post-intervention dengue incidence in Ortigueira was 97% lower compared to the control cities. Interpretation: The NVC method was confirmed to be a safe and efficient way to suppress Ae. aegypti field populations and prevent the occurrence of a dengue outbreak. Importantly, it has been shown to be applicable in large-scale, real-world conditions. Funding: This study was funded by Klabin S/A and Forrest Innovations Ltd.

9.
Nat Commun ; 14(1): 1772, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997530

RESUMO

Several millions of individuals are estimated to develop post-acute sequelae SARS-CoV-2 condition (PASC) that persists for months after infection. Here we evaluate the immune response in convalescent individuals with PASC compared to convalescent asymptomatic and uninfected participants, six months following their COVID-19 diagnosis. Both convalescent asymptomatic and PASC cases are characterised by higher CD8+ T cell percentages, however, the proportion of blood CD8+ T cells expressing the mucosal homing receptor ß7 is low in PASC patients. CD8 T cells show increased expression of PD-1, perforin and granzyme B in PASC, and the plasma levels of type I and type III (mucosal) interferons are elevated. The humoral response is characterized by higher levels of IgA against the N and S viral proteins, particularly in those individuals who had severe acute disease. Our results also show that consistently elevated levels of IL-6, IL-8/CXCL8 and IP-10/CXCL10 during acute disease increase the risk to develop PASC. In summary, our study indicates that PASC is defined by persisting immunological dysfunction as late as six months following SARS-CoV-2 infection, including alterations in mucosal immune parameters, redistribution of mucosal CD8+ß7Integrin+ T cells and IgA, indicative of potential viral persistence and mucosal involvement in the etiopathology of PASC.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Doença Aguda , Linfócitos T CD8-Positivos , Teste para COVID-19 , Progressão da Doença , Imunoglobulina A
10.
BMC Res Notes ; 15(1): 293, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071445

RESUMO

OBJECTIVE: Diabetic foot infection (DFI) represents a major healthcare burden, for which treatment is challenging owing to the pathophysiological alterations intrinsic to diabetes and the alarming increase of antimicrobial resistance. Novel therapies targeting DFI are therefore a pressing research need for which proper models of disease are required. RESULTS: Here, we present an optimized diabetic mouse model of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds, that resemble key features of DFI, such as pathogen invasion through wound bed and surrounding tissue, necrosis, persistent inflammation and impaired wound healing. Thus, in a time-efficient manner and using simple techniques, this model represents a suitable approach for studying emerging therapies targeting DFI caused by MRSA.


Assuntos
Diabetes Mellitus , Pé Diabético , Staphylococcus aureus Resistente à Meticilina , Dermatopatias , Infecções Estafilocócicas , Animais , Pé Diabético/terapia , Modelos Animais de Doenças , Camundongos , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/terapia , Staphylococcus aureus , Úlcera
11.
Polymers (Basel) ; 14(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36015566

RESUMO

Cationic polyacrylamides (CPAMs) are usually used as filler retention agents in papermaking formulations. However, increasing environmental restrictions and their non-renewable origin have driven research into bio-based alternatives. In this context, cationic lignocellulosic derivatives have been attracting considerable research interest as a potential substitute. In this work, distinct cationic celluloses with degrees of substitution of between 0.02 and 1.06 and with distinct morphological properties were synthesized via the cationization of bleached eucalyptus kraft pulp, using a direct cationization with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) or a two-step cationization, where the cellulose was first oxidized to form dialdehyde cellulose and was then made to react with Girard's reagent T (GT). Fibrillated samples were produced by subjecting some samples to a high-pressure homogenization treatment. The obtained samples were evaluated regarding their potential to flocculate and retain precipitated calcium carbonate (PCC), and their performance was compared to that of a commercial CPAM. The cationic fibrillated celluloses, with a degree of substitution of ca. 0.13-0.16, exhibited the highest flocculation performance of all the cationic celluloses and were able to increase the filler retention from 43% (with no retention agent) to ca. 61-62% (with the addition of 20 mg/g of PCC). Although it was not possible to achieve the performance of CPAM (filler retention of 73% with an addition of 1 mg/g of PCC), the results demonstrated the potential of cationic cellulose derivatives for use as bio-based retention agents.

12.
Cell Death Dis ; 13(8): 741, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030261

RESUMO

In addition to an inflammatory reaction, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-infected patients present lymphopenia, which we recently reported as being related to abnormal programmed cell death. As an efficient humoral response requires CD4 T-cell help, we hypothesized that the propensity of CD4 T cells to die may impact the quantity and quality of the humoral response in acutely infected individuals. In addition to specific immunoglobulins (Ig)A, IgM, and IgG against SARS-CoV-2 nucleocapsid (N), membrane (M), and spike (S1) proteins, we assessed the quality of IgG response by measuring the avidity index. Because the S protein represents the main target for neutralization and antibody-dependent cellular cytotoxicity responses, we also analyzed anti-S-specific IgG using S-transfected cells (S-Flow). Our results demonstrated that most COVID-19 patients have a predominant IgA anti-N humoral response during the early phase of infection. This specific humoral response preceded the anti-S1 in time and magnitude. The avidity index of anti-S1 IgG was low in acutely infected individuals compared to convalescent patients. We showed that the percentage of apoptotic CD4 T cells is inversely correlated with the levels of specific IgG antibodies. These lower levels were also correlated positively with plasma levels of CXCL10, a marker of disease severity, and soluble Fas ligand that contributes to T-cell death. Finally, we found lower S-Flow responses in patients with higher CD4 T-cell apoptosis. Altogether, these results demonstrate that individuals with high levels of CD4 T-cell apoptosis and CXCL10 have a poor ability to build an efficient anti-S response. Consequently, preventing CD4 T-cell death might be a strategy for improving humoral response during the acute phase, thereby reducing COVID-19 pathogenicity.


Assuntos
Anticorpos Antivirais , Linfócitos T CD4-Positivos , COVID-19 , Imunidade Humoral , Anticorpos Antivirais/imunologia , Apoptose , Linfócitos T CD4-Positivos/citologia , COVID-19/imunologia , Humanos , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
13.
Int J Pharm ; 623: 121954, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35760261

RESUMO

Skin infection by Mycobacterium ulcerans causes Buruli ulcer (BU) disease, a serious condition that significantly impact patient' health and quality of life and can be very difficult to treat. Treatment of BU is based on daily systemic administration of antibiotics for at least 8 weeks and presents drawbacks associated with the mode and duration of drug administration and potential side effects. Thus, new therapeutic strategies are needed to improve the efficacy and modality of BU therapeutics, resulting in a more convenient and safer antibiotic regimen. Hence, we developed a dual delivery system based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) microparticles and a gellan gum (GG) hydrogel for delivery of rifampicin (RIF) and streptomycin (STR), two antibiotics used for BU treatment. RIF was successfully loaded into PHBV microparticles, with an encapsulation efficiency of 43%, that also revealed a mean size of 10 µm, spherical form and rough topography. These microparticles were further embedded in a GG hydrogel containing STR. The resultant hydrogel showed a porous microstructure that conferred a high water retention capability (superior to 2000%) and a controlled release of both antibiotics. Also, biological studies revealed antibacterial activity against M. ulcerans, and a good cytocompatibility in a fibroblast cell line. Thus, the proposed drug delivery system can constitute a potential topical approach for treatment of skin ulcers caused by BU disease.


Assuntos
Úlcera de Buruli , Antibacterianos/uso terapêutico , Úlcera de Buruli/tratamento farmacológico , Úlcera de Buruli/microbiologia , Humanos , Hidrogéis/uso terapêutico , Poliésteres/química , Qualidade de Vida , Rifampina , Estreptomicina
14.
J Xenobiot ; 12(2): 91-108, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35645290

RESUMO

(1) Background: Nanocellulose is an innovative engineered nanomaterial with an enormous potential for use in a wide array of industrial and biomedical applications and with fast growing economic value. The expanding production of nanocellulose is leading to an increased human exposure, raising concerns about their potential health effects. This study was aimed at assessing the potential toxic and genotoxic effects of different nanocelluloses in two mammalian cell lines; (2) Methods: Two micro/nanocelluloses, produced with a TEMPO oxidation pre-treatment (CNFs) and an enzymatic pre-treatment (CMFs), and cellulose nanocrystals (CNCs) were tested in osteoblastic-like human cells (MG-63) and Chinese hamster lung fibroblasts (V79) using the MTT and clonogenic assays to analyse cytotoxicity, and the micronucleus assay to test genotoxicity; (3) Results: cytotoxicity was observed by the clonogenic assay in V79 cells, particularly for CNCs, but not by the MTT assay; CNF induced micronuclei in both cell lines and nucleoplasmic bridges in MG-63 cells; CMF and CNC induced micronuclei and nucleoplasmic bridges in MG-63 cells, but not in V79 cells; (4) Conclusions: All nanocelluloses revealed cytotoxicity and genotoxicity, although at different concentrations, that may be related to their physicochemical differences and availability for cell uptake, and to differences in the DNA damage response of the cell model.

15.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35564141

RESUMO

Cellulose micro/nanomaterials (CMNM), comprising cellulose microfibrils (CMF), nanofibrils (CNF), and nanocrystals (CNC), are being recognized as promising bio-nanomaterials due to their natural and renewable source, attractive properties, and potential for applications with industrial and economical value. Thus, it is crucial to investigate their potential toxicity before starting their production at a larger scale. The present study aimed at evaluating the cell internalization and in vitro cytotoxicity and genotoxicity of CMNM as compared to two multi-walled carbon nanotubes (MWCNT), NM-401 and NM-402, in A549 cells. The exposure to all studied NM, with the exception of CNC, resulted in evident cellular uptake, as analyzed by transmission electron microscopy. However, none of the CMNM induced cytotoxic effects, in contrast to the cytotoxicity observed for the MWCNT. Furthermore, no genotoxicity was observed for CNF, CNC, and NM-402 (cytokinesis-block micronucleus assay), while CMF and NM-401 were able to significantly raise micronucleus frequency. Only NM-402 was able to induce ROS formation, although it did not induce micronuclei. Thus, it is unlikely that the observed CMF and NM-401 genotoxicity is mediated by oxidative DNA damage. More studies targeting other genotoxicity endpoints and cellular and molecular events are underway to allow for a more comprehensive safety assessment of these nanocelluloses.

16.
Int J Biol Macromol ; 201: 468-479, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051499

RESUMO

Micro/nanofibrillated celluloses (M/NFCs) have attracted considerable research interest over the past few decades, with various pretreatments being used to reduce energy consumption and/or increase fibrillation. To date, few studies have considered cationization as a pretreatment for their preparation. In this work, quaternary ammonium groups were attached to cellulose fibers by a direct reaction with 2,3-epoxypropyltrimethylammonium chloride or by a two-step method (periodate oxidation + Girard's reagent T). The cationic fibers with degrees of substitution (DS) between 0.02 and 0.36, were subjected to homogenization treatment. The morphological properties, chemical composition, and rheological behavior were evaluated to assess the effect of DS and the effect of the cationization method (for samples with similar DS). The two-step cationization resulted in significant degradation of the cellulose structure, leading to the formation of short fibrils and solubilization of the material, ranging from 6% to almost complete solubilization at a DS of 0.36. Direct cationization resulted in longer fibrils with an average diameter of 1 µm, and no significant cellulose degradation was observed, leading to a more cohesive gel-like material (at 1 wt%). These observations clearly show the strong influence of the cationization method on the final properties of the cationic cellulosic materials.


Assuntos
Celulose , Eucalyptus , Cátions/química , Celulose/química , Reologia
17.
Cell Death Differ ; 29(8): 1486-1499, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35066575

RESUMO

Severe SARS-CoV-2 infections are characterized by lymphopenia, but the mechanisms involved are still elusive. Based on our knowledge of HIV pathophysiology, we hypothesized that SARS-CoV-2 infection-mediated lymphopenia could also be related to T cell apoptosis. By comparing intensive care unit (ICU) and non-ICU COVID-19 patients with age-matched healthy donors, we found a strong positive correlation between plasma levels of soluble FasL (sFasL) and T cell surface expression of Fas/CD95 with the propensity of T cells to die and CD4 T cell counts. Plasma levels of sFasL and T cell death are correlated with CXCL10 which is part of the signature of 4 biomarkers of disease severity (ROC, 0.98). We also found that members of the Bcl-2 family had modulated in the T cells of COVID-19 patients. More importantly, we demonstrated that the pan-caspase inhibitor, Q-VD, prevents T cell death by apoptosis and enhances Th1 transcripts. Altogether, our results are compatible with a model in which T-cell apoptosis accounts for T lymphopenia in individuals with severe COVID-19. Therefore, a strategy aimed at blocking caspase activation could be beneficial for preventing immunodeficiency in COVID-19 patients.


Assuntos
COVID-19 , Linfopenia , Apoptose , Linfócitos T CD4-Positivos/metabolismo , Caspases/metabolismo , Proteína Ligante Fas , Humanos , SARS-CoV-2 , Linfócitos T/metabolismo , Receptor fas/metabolismo
18.
Front Immunol ; 12: 613422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679753

RESUMO

Hyper-inflammatory responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a major cause of disease severity and death. Predictive prognosis biomarkers to guide therapeutics are critically lacking. Several studies have indicated a "cytokine storm" with the release of interleukin-1 (IL-1), IL-6, and IL-8, along with tumor necrosis factor alpha (TNFα) and other inflammatory mediators. Here, we proposed to assess the relationship between IL-6 and outcomes of patients with coronavirus disease 2019 (COVID-19). Our cohort consisted of 46 adult patients with PCR-proven SARS-CoV-2 infection admitted in a COVID-19 ward of the Hospital de Braga (HB) from April 7 to May 7, 2020, whose IL-6 levels were followed over time. We found that IL-6 levels were significantly different between the disease stages. Also, we found a significant negative correlation between IL-6 levels during stages IIb and III, peripheral oxygen saturation (SpO2), and partial pressure of oxygen in arterial blood (PaO2), showing that IL-6 correlates with respiratory failure. Compared to the inflammatory markers available in the clinic routine, we found a positive correlation between IL-6 and C-reactive protein (CRP). However, when we assessed the predictive value of these two markers, IL-6 behaves as a better predictor of disease progression. In a binary logistic regression, IL-6 level was the most significant predictor of the non-survivors group, when compared to age and CRP. Herein, we present IL-6 as a relevant tool for prognostic evaluation, mainly as a predictor of outcome.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Interleucina-6/sangue , SARS-CoV-2/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , COVID-19/sangue , COVID-19/mortalidade , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/mortalidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue
19.
Immunol Rev ; 301(1): 222-241, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33682158

RESUMO

Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Úlcera de Buruli/genética , Humanos , Mycobacterium ulcerans/genética
20.
Emerg Microbes Infect ; 10(1): 223-225, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33467983

RESUMO

Buruli ulcer (BU) is a devastating skin mycobacterial infection characterized by extensive cell death, which was previously suggested to be mediated by Bcl2-like protein 11 (BIM, encoded by the BCL2L11 gene). We here report the association of genetic variants in BCL2L11 with ulcerative forms of the disease in a cohort of 618 Beninese individuals. Our results show that regulation of apoptosis in humans contributes to BU lesions associated with worse prognosis, prompting for further investigation on the implementation of novel methods for earlier identification of at-risk patients.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Úlcera de Buruli/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiologia , Estudos de Coortes , Predisposição Genética para Doença , Variação Genética , Humanos , Mycobacterium ulcerans/fisiologia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...